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SUMMARY 

A numerical method is developed to solve the coupled unsteady laminar momentum and thermal boundary 
layers over a circular cylinder impulsively started from rest. The present non-iterative finite difference method, 
which requires relatively fewer grid points in the reversed flow region than any other method, can easily 
handle the separating boundary layer flows. The results indicate that the present method has accuracy 
comparable with the earlier methods, while consuming computer time approximately one order of magnitude 
less. 

The present numerical method allowed investigation of the effect of buoyancy parameter on the starting 
boundary layer. The time-dependent behaviour of the boundary layer is studied in terms of the appearance of 
the singularity, the distribution of skin friction and wall heat flux, and the wall position of the inflection 
point of the velocity profile. The transient as well as buoyancy-dependent patterns of the streamlines and 
isotherms are also studied. 

KEY WORDS Unsteady laminar boundary layer Buoyancy effect Non-iterative finite difference method Boundary layer 
singularity Separated flow region 

INTRODUCTION 

Unsteady viscous flows are an important area of fluid mechanics, having a myriad of applications 
in nature and technology which cannot all be elaborated here. Unsteady phenomena are involved 
in such flow problems as impulsive starting, periodic body oscillations, moving wall problems, 
vortex shedding and so on. These problems cannot, in general, be predicted or explained 
realistically by a potential theory or quasi-steady viscous flow models. Instead, the unsteady 
boundary layer or Navier-Stokes equations have to be solved directly. 

In the present paper, we consider the unsteady boundary layer being developed around a heated 
circular cylinder impulsively started from rest. The effect of buoyancy on unsteady separation, 
which has not been properly studied in the literature, is studied parametrically here. A similar flow 
without the thermal effect was calculated earlier by Telionis and Tsahalis’ by using a finite 
difference technique. Their result showed numerical instability when the non-dimensional time z 
was 0.65 at a pheripheral station 8 = 140°, which was measured from the front stagnation point of 
the circular cylinder. On thecontrary, Cebeci2 first failed to observe any numerical instability up to 
z d 1.0 and found that the solution was smooth. From this result, he suggested that the solution of 
the boundary layer equations remained smooth for all finite times, even though the boundary layer 
thickness increased exponentially with time towards the rear stagnation point. In 1982 Van 
Dommelem and Shen3 found numerically spontaneous generation of a ‘singularity’ at time z = 1.50 
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and 0 = 1 11.0 using Lagrangian boundary layer co-ordinates. Later, Cebeci4 extended his 
computation to times greater than unity and confirmed the development of a hump of large 
gradient in the displacement thickness at z = 1.375. From this result, he concluded that the 
computed 6* distribution suggested a singularity was developing in 6". Wang5 reported also 
that this singularity appeared at z =  1.4. A similar phenomenon will be examined later in the 
present paper. 

Here, an efficient non-iterative finite difference method is devised for the coupled unsteady 
momentum and thermal boundary layer equations in Eulerian co-ordinates, which constitutes 
another objective of the present research. Most of the earlier numerical methods have been 
iterative. Furthermore, they need hundreds of mesh points in the transverse direction, because the 
boundary layer thickness grows exponentially with time in the region of reversed flow. Linearizing 
the general non-linear finite difference equations without losing the formal order of accuracy, we 
obtained numerical solution non-iteratively at each time step. The technique was first applied to 
the compressible Navier-Stokes equations by Beam and Warming6 and then extended to the 
boundary layer equations by Orlandi and Ferziger' and Kim and Chang.8-9 To reduce the 
excessive number of grid points necessary in the region of reversed flow, transformed variables 
similar to those used in the unsteady rear stagnation point flow'' are utilized in the present 
formulation, by which the thickness of the computational boundary layer is kept almost constant. 
The transformed equations are first written as a system of five first-order partial differential 
equations before they are discretized and linearized. The resultant five implicit finite difference 
equations, which yield a 5 x 5 block tridiagonal coefficient matrix when assembled, are readily 
solved by using a well-known block elimination method. Details of the method are elaborated 
in the following. 

GOVERNING EQUATIONS AND TRANSFORMATIONS 

The Boussinesq as well as the boundary layer approximations are adopted in the equations. In the 
momentum boundary layer, the pressure and the buoyancy force are equally important as a flow- 
driving agent. The incident main flow is considered to be uniformly upward before it is disturbed by 
the presence of the heated cylinder. Merkinl' previously considered a similar flow domain, but it 
was in a steady state. The non-dimensional governing equations can be written as follows: 

at1 av -+-=o, ax ay 
au au a u  au GT i )2U 

at ax a y  ax Re2 d y 2  ' 
-- +u-+u-= U,"+---(T- T,)s in(u)+-  

Boundary conditions are 

y = O ,  u = O ,  v = O ,  T=T,,  

y+m, u-+U,, T+T,. 

Because of the various different phases in the growth of the boundary layer and the reversed flow 
region, we need to switch independent variables from one type to another depending on the elapsed 
time and characteristic flow regions under development. In order to avoid the singularity 
associated with impulsive starting, we recommend the transformation in Cebeci' as an appropriate 
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initial form: 

t = t ,  x=x, y=( l / J i )y ,  ( 44  

+ = Jtuef( t ,  x, Y), g(t ,  x, Y) = (T - T m ) / ( T w  - ~ m ) ,  (4b) 

u = a+/ay, = - a+/ax. ( 5 )  

with 

The three differential equations (1)-(3) can be reduced to two expressions of increased order 
(prime denotes differentiation with respect to y) as 

Boundary conditions are 

y = o ,  f = O ,  f ‘ = O ,  g = 1 ,  

y+co, y-1,  g + o .  

These transformed variables should be used in the time interval 0 6 t 6 t,, during which the 
boundary layer is rapidly developed after starting. For t ,  6 t d t,, the next type of dimensionless 
variables are appropriate:2 

t = t ,  x=x ,  y = y ,  @a) 

Equations (1)-(3) are transformed accordingly as 

These variables are employed in the entire range of x for the time up to t = t,, during which 
the rate of boundary layer growth is relatively retarded and the boundary layer thickness is not 
so large near the rear stagnation point. For t > t,, the second type of transformed variables, as 
in equation (8), are still valid in 0 < x < xl. However, they are switched to a third type of variables 
in the region x, < x < 1.0. The last transformation, which is extended from the work of Robins 
and Howarth,” designed to treat the rear stagnation point flow, is now applied to the entire 
boundary layer in the rear part of the circular cylinder containing the reversed flow region: 

t =  t ,  x=x, y =e-‘y, (114 

+= Uee-*f(trX,q), g( t ,x ,y )=(T-  T m ) / ( T w  - Tm). (1 1b) 

Equations (9) and (10) are now transformed as 

au c1 sin (zx) f” + e z t ~ ( # ”  - , f f 2  + I) + e2‘yfrr + eZtg ax ‘Je 
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Boundary conditions for the second and third type of transformations are the same as those used in 
the first transformation. 

The instants t l  and t ,  and the station x1 must be suitably chosen depending on the growth of the 
boundary layer thickness; and this requires some experience. A basic rule is that one type of 
transformed variables are kept as long as the thickness of the computational boundary layer 
remains small in the region of consideration. The time to switch to the next transformation is 
heralded when the computational boundary layer begins to grow rapidly under one type of 
transformed variables. The results show practically no change when a small variation is made 
in the values t , , t ,  and xl. 

The governing equations are bi-parabolic in the sense that initial condition is required both in 
time and streamwise direction. The initial data at t = 0 are readily obtained from equation (6) and 
(71 as 

I,, ‘I 1 I I  f + -f” = 0, -9‘’ + -9’ = 0. 
2 Pr 2 

The exact solutions of these equations are 

f = qerf( z )  + $[ exp ( -:) - 11, 

At the initial plane x = 0, the transformed equations are reduced to a set of mono-parabolic 
equations, demanding temporal initial data only. 

NUMERICAL FORMULATION 

The three sets of bi-parabolic equations, (6) and (7), (9) and (lo), and (12) and (13), are very similar to 
one another in thier form. It seems, therefore, sufficient to discuss the solution methodology on a 
general model of the equations. The order of these differential equations is first reduced by 
introducing new variables u, u and h (where the symbols u and u are reused with new definitions): 

f ’ = u ,  (16) 

u‘ = u, (17) 

u’ + m, f u + m2u2 + m3u + m,rp + m5g + m6 = m,” + m8( u z -  u g ) ,  (18) at 

g’=h,  (19) 
1 

Pr 
-h+m,hf  
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The boundary conditions are 

q = o ,  f = O ,  u = o ,  g = 1 ,  

q+m, a-1, g + o .  

In the above, the general coefficients m,, m 2 , .  . . , m8 are functions of x and t only. 
Equations (16)-(20) are solved by advancing the solution in the time co-ordinate while it is 

marched in the x direction simultaneously. To march in which direction first is unimportant. 
Discretization in the time direction is made by using an incremental value A as 

(21) W n f l  = W n  + Awn+', 

where W represents any of the variables f, u, v, g, h or t. 

introduced by Beam and Warming:6 
We discretize the time derivatives using a generalized time differencing formula, as first 

where q represents either the variable v or h. Among the various schemes identifiable by the two 
parameters < 1 and 4 < 1, we select a second-order-accurate three-point backward implicit 
scheme by letting 5 = 3 and 4 = 1.0. Introducing equation (22) into equations (18) and (20), 
we obtain 

Atn+ i 
1 + r  l + i  

($AR"+' +R")=Aq"+'  - - - - A q " + O [ ( ~ - ~ + + ) ( A t " + 1 ) 2  (23) 

where R represents the conglomerated terms from equation (18) or (20) equivalent to aqlat. The 
non-linear terms contained in the quantity AR"+l are now linearized without losing the formal 
order of accuracy by a similar procedure to that of Kim and Chang.8 

We now introduce spatial discretization using variable step sizes. Central differencing is done 
about the point (i,j - ))for the spatial derivatives in equations (16), (17) and (19) in which the time- 
like derivatives are not involved any more. For equations (18) and (20), differencing is done either 
about the point ( i  - 4, j - 4) or about the point (i, j - i), depending on the existence of the reversed 
flow. In order to consider the effect of backflow, the x derivatives of the incremental values, Au, A f 
and Ag, are discretized by rearward differencing in the reversed flow region. Central differencing is 
used for the rest of the derivatives in the previous time level. Compared with the method of zig-zag 
~ t y l e , ~ , ~ , ~  the present method is simple, straightforward and very efficient in treating the reversed 
flow. The resultant equations are 

A f i j  - A f i j -  - $Aqj(Auij + Auij- 1)  = a j ,  

A ~ i j  - A ~ i j -  1 - $A~/j(Avij  + Avij- 1) = bj- , 

(24) 

(25) 

(26) 

(27) 

+ (PJjAqi j -  + (P7)jAuij  + (P8)jAuij-  + (P9)jAuij + ( P l o ) j A v i j -  = e j ,  (28) 

( S 1 ) j A U i j  + (SJjAvij- 1 + ( S 3 ) j A f i j  + ( S d j A f i j - 1  + (S5)jAuij 

+ ( S 6 ) j A u i j -  1 + ( s7 ) jAg i j  + ( s 8 ) j A g i j -  1 = cj, 

(P1)jAhij + (PJjAhij- 1 + (P3)jAfij  + ( P J j A f i j -  1 + (P5)jAgij 

Agij  - Agij- 1 - $AVj(Ahij + Ahij-  1)  = d j -  1, 
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where the a, b, c, d, e, S and P are functions of known status or the linear coefficients relying on the 
previous time step only. The above system of equations yields a 5 x 5 block tridiagonal coefficient 
matrix when assembled, which is inverted without difficulty by using the well-known block 
elimination method. 

In this computation, the step size is taken as Ax = 0.025, At = 0.05 and Ay = 0.0001-1.5 (variable 
step sizes). The step size in the direction is varied exponentially. Though the boundary layer 
thickness is exponentially increasing with time in the rear reversed flow region, the maximum y 
value remains almost constant by the third type of transformation introduced earlier. We do not 
need, therefore, to increase the number of grid points in the y~ direction, and about 50 grid points 
were sufficient for successful computation. 

RESULTS AND DISCUSSION 

Flow without buoyancy effect 

Many earlier researchers have computed the flow past a circular cylinder impulsively started 
from rest by using both the Navier-Stokes and boundary layer equations. The results for the 
unheated circular cylinder are well summarized in Cebeci.’ Here, we will discuss our results in 
terms of the wall position of the inflection point of the velocity profile, the time distribution of the 
displacement thickness and the skin friction, and the appearance of computational instability 
connected to the boundary layer singularity, one by one. The time required for the reversed flow to 
appear at the rear stagnation point was t = 0.321. This result agrees very well with other 
calculations: 0.35 in Reference 1 and 0.320 in Reference 2. The wall position of the inflection point 
( fk  = 0) of the velocity profile is presented as a function of time in Figure 1, in terms of the 
buoyancy parameter a( = Gr/Re2) ,  and is compared with an earlier result. For an unheated 
cylinder (a = O.O), the comparison with Cebeci’s result turns out to be very good. Discussion of the 
results for other values of a will be postponed to the next section. Figure 2 shows the distribution of 
the dimensionless displacement thickness as a function of 0 and t. It is found that our results are 
closer to Cebeci2 than Wang.’ In Figure 3 the skin friction parameter agrees very well with 
Cebeci*, too. 

I’ 
1 .o 

0-5 

I- present 

\ 
0.0 I I 1 

60 - 90. 120. 150. 180. 
0 

Figure 1. Wall position of the inflection point 
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Figure 2. Dimensionless displacement thickness for OL = 0.0 

We now discuss the appearance of the boundary layer singularity associated with the unsteady 
separation. Van Dommelen and Shen3 found a singularity at 8 = 11 1.0 (measured from the forward 
stagnation point) and at time T = 1.50 in the Lagrangian co-ordinate system. Cebeci4 stated that 
the displacement thickness rapidly increased at the position 6, = 114.6 at time T = 1.375, which 
was caused by the breakdown of the numerical solution. From this result, he concluded that, while 
the computed 6 distribution for the circular cylinder problem suggested a singularity was 
developing in 6 at x = 2, the values of skin friction were smooth and free from any anomalies. 
Wang’ showed a similar change in the displacement thickness and defined singularity using the 
limiting streamline theory. He also argued that, despite the appearance of hump in the flow 
domain, the skin friction was not immediately influenced by its presence. In Figure 2, the present 
results for the displacement thickness show a similar hump phenomenon at time z = 1.35. In order 
to visualize how this ‘singularity’ develops in the interior of the boundary layer, we plotted the 
streamline patterns in Figure 4. The left-hand side shows streamlines at various instants. We can 
see that this numerical instability is first conceived at the centre of the recirculating flow, at the 
position 8 = 122.0 and at time z = 1.35, as distinguished by the small sawtooth-type contour. 
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Figure 3. Skin friction parameter for a = 0.0 

Figure 4. Streamlines and isotherms for LY = 0.0; plotted in the dimensionless ( x , y )  plane 
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Figure 5. Wall heat flux parameter for c( = 00 

Numerical results are rapidly broken down subsequently near this point, but the skin friction 
remains smooth for a while until this instability is propagated to the wall. 

The isothermal lines on the right-hand side of Figure 4 show how the thermal boundary layer is 
developed progressively. The thickness of the thermal boundary layer is largest in the 
neighbourhood of the point of zero skin friction (but not the stagnation points) and gradually 
decreases with increasing 0. The reason is that the stream leaves the surface nearly normal to the 
surface in the neigbourhood of the point of zero skin friction, as can be observed from the 
streamline pattern. The wall heat flux coefficient decreases monotonically with increasing 0 
before a reversed flow is encountered, as observed in Figure 5 for large times. The minimum heat 
flux evidently appears in the neighbourhood of the point of zero skin friction. The reason is obvious 
again: the temperature gradient falls sharply in that local region due to the flow leaving the cylinder 
surface. The wall heat flux remains smooth for a while even after the first appearance of the 
singularity, as was true with the skin friction. In Figures 4 and 10, it is recalled that the radial 
co-ordinate represents the transformed variable y ,  not the physical distance. 

Flow with buoyancy effect 

In Figure 6, our results compare well with those of Merkin" for the steady state mixed flow past 
a heated circular cylinder, for three different values of the buoyancy parameter. A higher buoyancy 
parameter a means larger skin friction and wall heat flux. The bigger and hotter the circular 
cylinder is, the higher these flow gradients are, since a is directly proportional to the characteristic 
length L and the temperature T,, by definition. 

To see the buoyancy effect on the unsteady boundary layer behaviour, we will consider three 
buoyancy parameters for the time being: a =  - 0.2,O.O and 0.2. Table I shows when and where the 
singularity first appears for different values of a. It predicts that, for larger a, the 8 position and time 
for the appearance of the singularity are sensitively increased. In Figure 1, where the wall position 
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Figure 6. Steady state skin friction and wall heat flux parameters 

Table I. Time and position of the singularity 

c1 - 0 2  0 0.2 
Time z(s) 1.125 1.325 1.450 
Angle @(deg) 114 122 144 

of the inflection point of the velocity profile is plotted as a function of time, it is observed that the 
time required for the reversed flow to first appear and the last position of the separation point 
before a singularity is found in the flow are again strongly affected by the parameter a. This implies 
that faster convergence to the steady state would be obtained by the higher a (stronger buoyancy) if 
the boundary layer singularity could be avoided. 

In Figure 7, where we have plotted the time-dependent distribution of the displacement 
thickness, we can judge quantitatively how much thinner the local displacement thickness becomes 
for c1 = 0.2 in comparison with a = - 0.2 at a fixed time and wall position. Figure 8 shows the 
distribution of the skin friction parameter as a function of a, z and 8. The skin friction is obviously 
higher for higher a and is relatively not much changed with time towards the forward part of the 
circular cylinder. In Figure 9, the heat flux distribution is plotted as a function of a, z and 8. For 
more than half of the cylinder surface measured from the forward stagnation point, the heat flux 
coefficient is smaller for lower a. This trend is reversed, however, toward the rear part of the 
cylinder. The reason is that the less heated (or less cooled) fluid from the outer region of the 
boundary layer is impinging downwards toward the rear part of the cylinder on a larger scale for 
lower x .  The streamline pattern given in Figure 10 for three different values of c1 at the same instant 
confirms this argument. 
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Figure 7. Dimensionless displacement thickness 

We have plotted in Figure 11 the time required for the first appearance of the reversed flow 
(or f k  = 0) at the rear stagnation point of the circular cylinder. This time increases nearly 
exponentially with the buoyancy parameter a and, at roughly the asymptotic value a = 0.5, it 
seems that the wall inflection point is finally heated off. This suggests the important concept 
that the circular cylinder can be made free from any flow reversal by manipulating the buoyancy 
parameter. 

CONCLUDING REMARKS 

A numerical method has been developed to solve the unsteady separated laminar boundary layers 
with the buoyancy force term included in the momentum equation. Through linearization of the 
finite difference equations, fast calculation was performed non-iteratively at each time step without 
losing the formal order of accuracy. It was further possible to treat the reversed flow region with 
relatively fewer grid points, thanks to the nature of the special co-ordinate transformation adopted 
or the exponential time dependence in scaling the radial co-ordinate. The consequence is 
characterized by the computational acceleration by the order of 10 in comparison with other 
existing methods. 

Numerical instability associated with the boundary layer singularity first appeared at the centre 
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Ue f i  
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Figure 8. Skin friction parameter 

of the recirculating flow behind the heated (or cooled) circular cylinder and then rapidly 
propagated to other region. The wall skin friction as well as the wall heat flux remained smooth 
for a while, after the first appearance of the instability, until it reached the surface. The time and 
position far the first appearance of the singularity were found to be affected sensitively by the 
buoyancy parameter a. 

From the discussion so far, it is evident that the buoyancy force influences drastically the 
properties of the otherwise forced flow. With increasing values of a, the reversed flow region behind 
the circular cylinder is reduced in scale and the skin friction is always elevated everywhere, but not 
the local wall heat flux. At about the asymptotic value a = 05, the circular cylinder finally reaches a 
state free from any flow reversal. 

APPENDIX: NOMENCLATURE 

Dimensionless stream function 
Dimensionless temperature 

f 
9 
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Figure 9. Wall heat flux parameter 

Figure 10. Streamlines and isotherms for CI = 1.00 
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Figure 11. Time required for the first appearance of the reversed flow at the rear stagnation point 

Gr 

Pr 
R 
Re 
u, 2) 

u e  

x7 Y 

rl 

0 

6,6* 

Superscript 

L, v, T,, t ,  

a 

7 

* 

Subscripts 

W 

m 

Grashof number 
Characteristic length (xR) ,  velocity (211U*,), temperature (T,  - T*,) and time (L /V)  
Prandtl number ( = 1.0) 
Radius of the circular cylinder 
Reynolds number 
Dimensionless velocity components in the (x, y )  co-ordinates 
Streamwise velocity outside of the boundary layer 
Dimensionless stream co-ordinates (x = x* / zR ,  y = y * f i / ~ R )  
Buoyancy parameter (Gr/Re2)  
Dimensionless co-ordinate in the cross-stream direction; see equations (4a), (8a) and 

Azimuthal angle measured from the front stagnation point 
Dimensionless time (t /2) 
Dimensionless displacement thickness (l," (1 - u/U,) dy) 

(1 la> 

Dimensional variables 

Wall condition 
Free stream condition 
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